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Abstract

The feeding effects of 5-hydroxytryptamine (5-HT)1 and 5-HT2 receptor agonists injected into the hypothalamic paraventricular nucleus

(PVN) immediately prior to PVN administration of neuropeptide Y (NPY) were examined. The impact of these same compounds on NPY-

induced alterations in energy metabolism was also assessed in an attempt to characterize further the potential interactive relationship of PVN

NPY and 5-HT on feeding and whole body calorimetry. Specifically, several experiments examined the effect of various 5-HT receptor

agonists on NPY-stimulated eating and alterations in energy substrate utilization [respiratory quotient (RQ)]. This included the 5-HT1A

receptor agonist 8-OH-DPAT, the 5-HT1B/1A agonist RU 24969, the 5-HT1D agonist L-694,247, the 5-HT2A/2C agonist DOI, the 5-HT2B

agonist BW 723C86 and the 5-HT2C agonist mCPP. In feeding tests conducted at the onset of the dark cycle, drugs were administered 5 min

prior to PVN injection of NPY and food intake was measured 2 h postinjection. The metabolic effects of NPY following a similar

pretreatment were monitored using an open-circuit calorimeter measuring the volume of oxygen consumed (VO2), carbon dioxide produced

(VCO2) and RQ (VCO2/VO2). PVN injection of NPY (100 pmol) potentiated feeding and evoked reliable increases in RQ. Only DOI

(2.5–5 nmol) pretreatment antagonized NPY-induced eating and blocked the peptide’s effect on energy substrate utilization. Direct PVN

pretreatment with spiperone (SPRN), a 5-HT2A receptor antagonist, and ketanserin (KTSN), a 5-HT2A/2C antagonist, but not SDZ SER 082, a

5-HT2B/2C antagonist, or the 5-HT2C antagonist RS 102221, blocked the effect of DOI in both feeding and metabolic tests providing

additional evidence that activation of PVN 5-HT2A receptors inhibits NPY’s action on feeding and substrate utilization. D 2002 Elsevier

Science Inc. All rights reserved.
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1. Introduction

There is now extensive evidence to indicate that

5-hydroxytryptaminergic (5-HT) innervation of the medial

hypothalamus is involved in the control of ingestive

behavior. Autoradiographic and immunofluorescence stud-

ies have identified 5-HT-containing neurons in the medial

region of the hypothalamus as well as dense numbers of

5-HT1/2 receptors (Hoyer, 1988; Leibowitz and Jhanwar-

Uniyal, 1989; Sawchenko et al., 1983), which are

reported to mediate the satiety-inducing effect of 5-HT

(Currie and Coscina, 1996a; Curzon, 1990). The seroto-

nergic innervation of the medial hypothalamus arises from

5-HT projections of the midbrain raphe nuclei (Stein-

busch, 1981). Numerous studies have demonstrated that

the paraventricular nucleus (PVN) is sensitive to the

feeding inhibitory effect of 5-HT, particularly when the

monoamine is administered at the onset of the nocturnal

cycle (Currie, 1996; Currie and Coscina, 1996a; Leibo-

witz et al., 1989). Direct PVN injections of 5-HT dose-

dependently suppress food intake (Currie, 1996; Currie

and Coscina, 1996a; Leibowitz et al., 1989). This effect is

reproduced following PVN infusion of various 5-HT

receptor agonists and reuptake inhibitors (Currie, 1996;

Currie and Coscina, 1996a; Curzon, 1990; Dourish,

1992). However, it is generally acknowledged that the

impact of various 5-HT compounds is not mediated
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exclusively by the PVN, as lesions of this nucleus fail to

modify the anorectic action of systemically administered

5-HT agonists (Fletcher et al., 1993).

In contrast to the feeding suppression elicited by PVN

5-HT, local injection of neuropeptide Y (NPY) elicits robust

hyperphagia (Currie and Coscina, 1995; Leibowitz and

Alexander, 1991; Stanley and Leibowitz, 1985). NPY is a

36-amino acid peptide and is synthesized in neurons of the

arcuate nucleus projecting to the PVN (DeQuidt and

Emson, 1986; Jhanwar-Uniyal et al., 1993). Bilateral PVN

infusion of anti-NPY g-globulin suppresses feeding (Shiba-

saki et al., 1993) and chronic NPY administration induces

rapid weight gain and increased body fat deposition (Stan-

ley et al., 1986, 1989). While NPY administration into

either the PVN or perifornical region of the hypothalamus

(PFH) elicits eating, PVN but not PFH injections of NPY

evoke a concomitant hypothermia (Currie and Coscina,

1995). Further evidence shows that PVN but not PFH

NPY alters energy substrate utilization as indicated by

increases in respiratory quotient (RQ; Currie and Coscina,

1996b). This suggests that PVN NPY modulates integrative

and regulatory mechanisms of feeding, thermogenesis and

energy metabolism.

Recently, we reported that pretreatment with DOI, a

5-HT2A/2C receptor agonist, microinjected into the PVN,

inhibited feeding stimulated by PVN NPY infusion (Currie

and Coscina, 1997, 1998) as well as NPY-induced alterations

in energy substrate utilization (Currie and Coscina, 1998). A

similar effect was not found following DOI pretreatment in

the PFH or ventromedial nucleus (VMN). In the present

study, we investigated the effects of several receptor-specific

5-HT agonists on NPY eating and energy metabolism. The

results of this study indicate that, of the various 5HT1 and

5-HT2 receptor agonists administered, only PVN DOI,

injected at the start of the dark cycle, inhibited the increases

in eating and RQ elicited by PVN NPY. Moreover, blockade

of 5-HT2A but not 5-HT2B or 5-HT2C receptors antagonized

the inhibitory action of DOI.

2. Materials and methods

2.1. Animals

Adult male Sprague–Dawley rats (Charles River)

weighing 275–300 g at the time of surgery were used.

Rats were housed individually in polypropylene cages

with ad libitum access to standard laboratory chow pellets

and water. The animal colony room was maintained on a

12-h light/dark cycle (lights on at 04:00 h) and at a

temperature of 22 ± 2 �C.

2.2. Apparatus

Oxygen consumption (O2) and carbon dioxide (CO2)

production were measured using an Oxyscan open-circuit

indirect calorimeter (AccuScan Instruments, Columbus, OH).

Detectors measured O2 and CO2 sequentially across

each acrylic test chamber. The flow rate was set at

1500 ml/min. Concentrations of the gases were recorded

in ml/kg body weight min. RQ was calculated as the

volume of CO2 produced (VCO2) divided by the volume

of O2 consumed (VO2). The analyzers were frequently

calibrated using primary gas standards of high purity

(Matheson, New York, NY).

2.3. Drugs

The following 5-HT receptor agonists (Research Bio-

chemicals/Sigma or Tocris) were administered as a pre-

treatment prior to NPY injection. This included the 5-HT1A

receptor agonist 8-OH-DPAT HBr, the 5-HT1B/1A agonist

RU 24969, the 5-HT1D agonist L-694,247, the 5-HT2A/2C

agonist DOI HCl, the 5-HT2B agonist BW 723C86 HCl

and the 5-HT2C agonist mCPP HCl. The 5-HT antagonists

used included spiperone HCl (SPRN), a 5-HT2A antagon-

ist, the 5-HT2A/2C antagonist ketanserin tartrate (KTSN),

the 5-HT2B/2C antagonist SDZ SER 082 fumarate and the

5-HT2C antagonist RS 102221 HCl. Compounds were

dissolved in sterile water vehicle with the exception of

L-694,247 and BW 723C86, which were dissolved in

DMSO. NPY (Peninsula) was dissolved in sterile water.

All drugs were injected in a volume of 0.3 ml into the PVN

using a microinjector extending 4 mm beyond the perman-

ent guide cannula. Drugs and their respective doses were

selected based on receptor binding properties, pilot data

and previous reports examining 5-HT effects on ingestive

behavior and energy metabolism (Currie and Coscina,

1997, 1998; Dryden et al., 1996; Fletcher et al., 1992;

Grignaschi et al., 1996).

2.4. Design and procedure

Rats were anesthetized with sodium pentobarbital

(50 mg/kg ip) and placed in a Kopf stereotaxic frame

with the incisor bar set 3.6 mm below the interaural line.

PVN coordinates for the guide cannula relative to bregma

were AP� 1.5 mm, L� 0.3 mm and V� 4.5 mm (Pax-

inos and Watson, 1998). Guide cannulae (22 G; Plastics

One, Roanoke, VA) were implanted 4 mm dorsal to the

PVN. Implants were secured with acrylic cement and

stainless-steel screws penetrating the skull. A 28-G stain-

less-steel inner stylet maintained cannula patency. Follow-

ing a postoperative recovery period of 1 week, rats were

acclimated to the metabolic chambers and received sev-

eral mock injections.

In feeding tests, separate groups of rats (n = 10 per group)

were used to examine the effects of the various 5-HT

receptor agonists on NPY-stimulated eating. Serotonergic

agonists or their respective vehicles were administered 5 min

prior to 100 pmol of NPY, which itself was infused just

before the start of the nocturnal cycle. Compounds were
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injected at the following doses: BW 723C86 (2.5–5 nmol),

RU 24969 (5–10 nmol), DOI (2.5–5 nmol), 8-OH-DPAT

(0.4–0.8 nmol), L-694,247 (10–20 nmol) and mCPP

(10–20 nmol). Under control conditions, two consecutive

vehicle injections were administered. Food intake was meas-

ured 2 h postinjection. While separate groups of animals

were used to examine the effects of each 5-HT agonist on

NPY eating, within a particular group, all rats received each

dose of the agonist paired with NPY in a randomized order.

At least 4 days separated successive testing.

In metabolic testing, similar injection procedures and

treatments were followed as outlined above. Again, the

5-HT agonist (n = 8 per group) was administered 5 min prior

to NPY (100 pmol). O2 consumption and CO2 production

were recorded every 5 min for 2 h postinjection. Food and

water were not available during testing. Respiratory

exchange was monitored over 2 h.

The above studies demonstrated that only DOI pretreat-

ment antagonized NPY-stimulated eating and blocked the

peptide’s effect on RQ. Consequently, a final series of

studies examined the impact of direct PVN injections of

several 5-HT receptor antagonists administered immediately

prior to PVN DOI and NPY. Specifically, separate groups of

rats were injected with either KTSN (15–30 nmol), RS

102221 (0.25–0.5 nmol), SDZ SER 082 (10–20 nmol) or

SPRN (5–10 nmol) followed by DOI (5 nmol) and NPY

(100 pmol). Equal numbers of vehicle injections were

administered under control conditions. The feeding (n = 10

per group) and RQ (n = 8 per group) effects were measured

as described in the previous experiments.

2.5. Histological and statistical analyses

Cannulae placements were confirmed via histological

examination as described previously (Currie and Coscina,

1995, 1996b). Sections were viewed relative to the stereo-

taxic atlas of Paxinos and Watson (1998). All rats

reported here were found to have injector tracts extending

into the PVN.

Data were analyzed by separate one- or two-way ana-

lyses of variance (ANOVA) for repeated measures. Specific

comparisons between means were evaluated using post hoc

Tukey tests. The criterion for statistical significance was

P < .05.

3. Results

Fig. 1 illustrates the effect of PVN administration of

various 5-HT receptor agonists on NPY-stimulated eating at

the onset of the nocturnal cycle. One-way ANOVA indi-

cated that PVN injection of NPY elicited a significant

increase in 2-h feeding, while pretreatment with DOI

(2.5–5 nmol) antagonized this effect [F(3,27) = 289.5,

P < .0001]. However, NPY hyperphagia was unaffected by

PVN BW 723C86, RU 24969, 8-OH-DPAT, L-694,247 or

mCPP. The inhibitory effect of DOI on NPY feeding was, in

turn, blocked by KTSN [15–30 nmol; F(4,36) = 212.9,

P < .0001] and SPRN [5–10 nmol; F(4,36) = 342.1,

P < .0001] but not by RS 102221 or SDZ SER 082, as

Fig. 1. Food intake after NPY injection into the PVN following 5-HT

receptor agonist pretreatment. DOI significantly reduced feeding elicited by

PVN NPY while other 5-HT agonists were ineffective. Values represent

mean intakes ( ± S.E.M.) measured over 2 h. Data were analyzed by

repeated-measures ANOVA and post hoc Tukey tests. *P< .05 compared

to Veh; * *P < .05 compared to NPY.

Fig. 2. Administration of the 5-HT receptor antagonists SPRN and KTSN,

but not RS 102221 or SDZ SER 082, reversed the inhibitory action of DOI

(5 nmol) on NPY (100 pmol)-stimulated eating. Values are represented as

mean intakes ( ± S.E.M.) over 2 h. Data were analyzed by ANOVA and post

hoc Tukey tests. *P < .05 compared to Veh.
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shown in Fig. 2. In fact, SPRN completely antagonized

DOI’s action.

Fig. 3 illustrates the effects of NPY on RQ after injection

into the PVN. Data are presented as mean RQ values during

the initial 2 h of the dark period. Values are shown in 20-min

intervals. Two-way ANOVA for repeated measures showed

that both doses of DOI attenuated NPY’s reliable effect on

RQ [Treatment�Time interaction; F(72,504) = 108.3,

P < .00001]. This effect persisted throughout the entire 2-h

test. In contrast, all other 5-HT receptor agonists tested failed

to alter NPY metabolism. The attenuation by DOI of NPY’s

effect on RQ was reversed by KTSN [F(96,672) = 276.8,

P < .00001] and SPRN [F(96,672) = 419.3, P < .00001], as

demonstrated in Fig. 4. RS 102221 and SDZ SER 082 were

ineffective. For clarity, only the higher dose of the antagonist

paired with DOI/NPY is depicted graphically. However, both

Fig. 3. Mean ( ± S.E.M.) RQ following PVN 5-HT receptor agonist pretreatment in NPY (100 pmol)-treated rats. Only DOI (2.5–5 nmol) attenuated NPY’s

effects on RQ. Statistical differences between treatments were determined by repeated-measures ANOVA and post hoc Tukey tests. *P < .05 compared to Veh.
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doses of SPRN and KTSN attenuated the inhibitory effect of

DOI within 20 and 40 min of treatment, respectively.

4. Discussion

Previous reports suggest that hypothalamic NPY and

5-HT interact antagonistically in the control of ingestive

behavior. NPY is found in high concentrations within

medial hypothalamic neurons where it coexists with 5-HT

(DeQuidt and Emson, 1986; Hokfelt et al., 1987). In

contrast to the marked hyperphagia evoked by NPY (Currie

and Coscina, 1995, 1996b, 1997; Leibowitz and Alexander,

1991; Stanley and Leibowitz, 1985; Stanley et al., 1986,

1989), 5-HT and its agonists suppress food intake (Currie,

1996; Currie and Coscina, 1996a; Curzon, 1990; DeQuidt

and Emson, 1986; Dourish, 1992; Fletcher et al., 1992;

Grignaschi et al., 1995; Leibowitz et al., 1989; Vickers et al.,

2000). More recent evidence illustrates that the direct

5-HT2A/2C receptor agonist DOI injected into the PVN but

not the PFH or VMN inhibits the effects of NPY on energy

intake and metabolism (Currie and Coscina, 1997; Grigna-

schi et al., 1996). Because DOI pretreatment in hypothala-

mic sites other than the PVN fails to alter NPY’s effects on

eating (Currie and Coscina, 1997), and given that NPY’s

potentiation of RQ is mediated within the PVN (Currie and

Coscina, 1996b), it is argued that the PVN mediates the

effects of NPY and 5-HT on feeding and metabolism.

The results of the present study are in agreement with

previous work illustrating the interactive action of PVN

Fig. 4. PVN injection of SPRN and KTSN blocked the inhibitory effect of DOI (5 nmol) on NPY (100 pmol)-induced changes in energy substrate utilization

(RQ). RS 102221 and SDZ SER 082 were ineffective in altering DOI’s action. RQs (shown here as mean ± S.E.M.) were monitored over the initial 2 h of the

dark cycle. Data were analyzed by repeated-measures ANOVA and Tukey tests. *P < .05 compared to Veh.
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5-HT and NPY on food intake and substrate utilization. Our

findings clearly indicate that only 5-HT2A/2C receptor stimu-

lation effectively antagonizes the action of NPY. That is,

DOI pretreatment alone inhibited NPY’s actions. However,

PVN injections of the 5-HT1A receptor agonist 8-OH-DPAT,

the 5-HT1B/1A agonist RU 24969, the 5-HT1D agonist

L-694,247, the 5-HT2B agonist BW 723C86 and the

5-HT2C agonist mCPP all failed to alter the effect of NPY

on feeding and RQ. Moreover, SPRN, a 5-HT2A antagonist,

and KTSN, a 5-HT2A/2C antagonist, reversed the inhibitory

action of DOI, while the 5-HT2B/2C antagonist SDZ SER

082 and the 5HT2C antagonist RS 102221 were ineffective.

As indicated above, in one previous report, PVN injec-

tions of DOI attenuated NPY-stimulated eating (Currie and

Coscina, 1997). However, DOI injections into either the

PFH or the VMN were not found to alter feeding after

subsequent administration of NPY during the mid-light

cycle. The present results are consistent with a recent study

confirming that DOI pretreatment antagonizes NPY hyper-

phagia, specifically at the start of the active cycle (Currie

and Coscina, 1998). While DOI antagonized NPY-stimula-

ted eating, pretreatment with the 5-HT1B/2C against TFMPP

was ineffective (Currie and Coscina, 1998). Given that

TFMPP binds to 5-HT2C receptors, its inability to suppress

NPY feeding suggests that DOI’s antagonism is mediated by

PVN 5-HT2A receptors. This is consistent with the findings

of the current study in which mCPP also failed to alter

NPY’s action. A similar effect of DOI was observed on

alterations in RQ induced by PVN NPY infusion. Therefore,

microinjection of DOI but not TFMPP inhibited the marked

increases in RQ evoked by NPY administration into the

PVN (Currie and Coscina, 1998). Collectively, our findings

suggest that PVN 5-HT2A receptors modulate the action of

5-HT on NPY-induced feeding and substrate utilization,

specifically at the onset of the nocturnal period.

In addition to its orexigenic action, NPY activates the

endocrine pancreas to alter insulin secretion (Abe et al.,

1989; Moltz and MacDonald, 1985), decreases sympathetic

nerve activity to interscapular brown adipose tissue (Bill-

ington et al., 1991; Dryden et al., 1994; Egawa et al., 1991)

and stimulates the hypothalamic–pituitary–adrenal axis

(HPA; Hanson and Dallman, 1995; Wahlestedt et al.,

1987). PVN NPY injections stimulate adrenocorticotropin

hormone secretion as well as hypothalamic corticotropin-

releasing hormone (CRH) immunoreactivity (Harfstrand

et al., 1987; Hass and George, 1987; Wahlestedt et al.,

1987). The NPY-induced reduction in thermogenesis is

consistent with recent anatomical evidence dissociating the

feeding and hypothermic effects of NPY (Currie and

Coscina, 1995). While these findings further implicate

NPY in metabolic regulation, other work has shown that

hypothalamic NPY levels decrease in response to treatment

with 5-HT agonists or increase after administration of 5-HT

antagonists (Dryden et al., 1993; Rogers et al., 1991;

Smialowska and Legutko, 1991). Systemic administration

of D-fenfluramine attenuates NPY-stimulated eating (Bend-

otti et al., 1987; Brown and Coscina, 1995), an effect

mediated by extrahypothalamic PVN 5-HT1B receptors

(Grignaschi et al., 1995). Also, acute injection of the

5-HT1A agonist flesinoxan stimulates eating and increases

NPY levels in the PVN and arcuate nucleus (Dryden et al.,

1996). Our data suggest that 5-HT2A receptors, within the

PVN, exert a modulatory role over NPY, specifically in

relation to NPY’s feeding and metabolic action. Several

recent findings support such a relationship. For example,

decreases in the density of striatal NPY immunoreactive

neurons have been detected after partial 5-HT lesions

(Compan et al., 1996). While no data are yet available on

the 5-HT receptor subtype expressed by PVN NPY neurons,

in one report, NPY immunoreactivity and 5-HT2A/2C bind-

ing in the cortex were detected following 5-HT depletion

(Compan et al., 1998). No differences in 5-HT1A and

5-HT1B/1D binding were observed. While it is likely that

NPY/5-HT relationships are influenced by anatomical site,

cellular milieu and neurotransmitter colocalization, these

findings continue to support a potential interactive relation-

ship between NPY and 5-HT mechanisms.

In the present study, the increases in RQ to values

exceeding 1.0 reflect an increase in carbohydrate oxidation

in favor of fat storage (Bray, 1989; Kleiber, 1975). The

diversion of metabolism toward carbohydrate utilization and

fat synthesis is consistent with the preferential increase in

carbohydrate appetite elicited by PVN NPY (Jhanwar-Uni-

yal et al., 1993; Leibowitz et al., 1992). With respect to

5-HT, peripherally administered DOI and RU 24969 have

been reported to evoke nocturnal hypophagia associated

with an attenuation in the elevation of metabolic rate (VO2)

(Bovetto and Richard, 1995). In contrast, the 5-HT1A

agonist 8-OH-DPAT increased VO2. These findings are

consistent with other evidence implicating 5-HT in thermo-

genic and metabolic processes (LeFeuvre et al., 1991;

Rothwell and LeFeuvre, 1992; Rothwell and Stock, 1987;

Sakaguchi and Bray, 1989). Moreover, recent work indi-

cates that DOI-induced hypophagia is mediated via 5-HT2A

activation of the HPA (Raghavendra and Kulkarni, 2000)

and that a-helical-CRF9-41 attenuates the antagonism of

DOI on NPY-stimulated eating (Grignaschi et al., 1996).

This in turn appears to implicate the HPA and CRH in the

feeding and energetic effects of 5-HT and NPY.

In conclusion, the present results provide continued

support for a unique role of 5-HT in relation to its inter-

action with NPY. Specifically, our findings indicate that

5-HT2A receptors, within the medial hypothalamic PVN,

modulate the action of NPY on ingestive behavior and

energy metabolism.
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